
Automatic Number-Plate Recognition
Image Processing Group Project Summary

2022/23 Fall Semester

Barnabás Börcsök barnabas.borcsok@edu.bme.hu

Gergő Haragos geri.haragos@gmail.com

Zoltán Simon zoltan.simon@edu.bme.hu

Bence Sándor Szabó szabo.bence.sandor@gmail.com

Budapest University of Technology and Economics

1. Introduction

There are many use cases e.g. in traffic control, where the License Plate (LP) of vehicles must be read.
This task can be automated by computers. A wall-mounted or even hand-held camera can take pictures
of cars. The image then can be processed by various algorithms to detect the LP, segment the characters
and finally recognize these characters. In recent years with the increasing amount of traffic, the need for
well-performing Automatic License Plate Recognition (ALPR) systems has increased substantially.

After a discussion of the current state-of-the-art, we propose our own ALPR implementation, evaluating
it in multiple visual scenarios.

Our implementation is available at https://github.com/bobarna/bme-image-processing, with de-
tailed, reproducible steps for all stages of our pipeline.

2. Previous Solutions

2.1 Automatic Number-Plate Recognition

In the past years many research projects have been focused on ALPR. We have surveyed some of the most
recent and most promising works in this field. A recent survey by Shashirangana et al. (2021) gives an
overview of different methods and practices used in ALPR.

Texture-based methods use characters present on the LP as the basis for ALPR. Significant color
difference between the board and its characters creates a high-frequency color transition. If the image is
grayscale, there is an easy to distinguish change of colors between the characters and the background of
the board. This creates a unique pixel intensity distribution in the region of the plate. The plate region
should have a high edge density. This is used in edge-based systems. In ke Xu et al. (2005) the authors
used scan-line technique for ALPR.

Introduced by Redmon et al. (2016) as a novel object detection method, You Only Look Once (YOLO)
serves as the basis for the ALPR introduced by Laroca et al. (2019). The naming of YOLO comes from
the fact that it performs the object detection for the full image in a single pass. The employed Neural
Network (NN) divides the image into regions and predicts bounding boxes and probabilities for each region.
Building on this method the authors achieved a license plate recognition rate of 96.9%. The method was
tested on multiple different datasets with outstanding results. Besides the novel approach, the authors of
this work also released a public dataset of 38, 351 manually labeled bounding boxes on 6, 239 images.

A benchmark for ALPR is introduced by Gonçalves et al. (2016). This benchmark is composed of a
dataset helping the License Plate Character Segmentation (LPCS) step. High success rate of this step is
crucial for end-to-end success of ALPR. Besides the dataset, the authors also propose a new evaluation

1

https://github.com/bobarna/bme-image-processing


measure of the location of the bounding box within the ground-truth annotation. To further optimize the
LPCS step, they suggest a more straightforward approach to perform it efficiently.

3. Method

In this section we discuss the different methods used in our solution. We deconstruct the task of license
plate recognition into arbitrary smaller parts. The first great challenge of license plate recognition is
determining the location of the plate in the picture. In an upcoming subsection we will introduce the used
bounding box detection system. The other major challenge of license plate recognition is actually reading
the plate. After we have assigned a bounding box the rest is up to an Optical Character Recognition (OCR)
subsystem. An OCR recognizes characters printed on the plate.

3.1 YOLO Object Detection

We used transfer learning to train a YOLOv7 based on the original implementation of the paper by Wang
et al. (2022). We detect a single object on each image: license plates. We trained our model for 100
epochs. We achieved around 90% precision on both training, data and validation data, which carried over
to images of Hungarian license plates as well.

Although the goal of the project is the detect Hungarian license plates, we observed that a model
trained on international license plates generalizes well enough for the object detection problem. This also
made us easier to find datasets online, as our Hungarian license plate dataset did not include bounding
box data. (See our code repository 1 for more details on the datasets used.)

We used a test data set not seen during training for verifying the model’s generalization capabilities
after training. Performance on a randomly sampled subset of these test images can be seen in Figure 1.

These results show that the model detects the license plates in almost all cases. Although we can
see that the model usually gave a high confidence to the right detection, while further (usually incorrect)
detections have been given a lower confidence value, we intentionally kept the confidence threshold low in
order not to miss harder to see license plates, even when some other object got incorrectly recognized with
a higher confidence.

1. https://github.com/bobarna/bme-image-processing

2

https://github.com/bobarna/bme-image-processing


Figure 1: YOLOv7 transfer learning performance on test data. Confidence values are also shown next to
each detection. 3



3.2 Optical Character Recognition

When it comes to OCR we experimented with different methods. Our first approach followed the archi-
tecture published by Shi et al. (2017). Unfortunately at the end of the development cycle we had to use a
different model, because the original method did not provide the desired results. In the final solution we
utilize the paddleOCR system by Du et al. (2020). Nevertheless we wanted to describe the original method
proposed by Shi et al. (2017), since this was in the focus of our development efforts for the majority of
the project. Thus, the following section serves as a brief introduction to an otherwise promising OCR
architecture.

We deal with the classic problem of computer vision, image-based sequence recognition. Serial objects,
such as scene text, are usually recognized as a sequence of tags rather than a single tag. RNNs can be
trained and optimized end-to-end, but require complex post-processing steps before being used. CRNN
is a combination of DCNN and RNN and forms an end-to-end system for sequence recognition. It can
be learned directly from sequence labels, does not require detailed annotations (such as words), and only
requires height normalization in the training and testing sessions.

A CRNN is a type of Recurrent Neural Network (RNN) that can be trained to make a prediction for
each frame of a sequence of features that is output by convolutional layers. In CRNN, each column of the
field maps corresponds to a region of a rectangle (called the receptive field) of the original image, and the
regions are in the same order as the corresponding columns in the feature maps from left to right. A deep
bidirectional recurrent neural network (CRNN) is built on top of convolutional layers as recurrent layers.

The recurrent layers predict a label distribution yt for each frame xt of the feature sequence. Each time
it receives a frame in the sequence, it updates its internal state with a non-linear function that takes both
the current input state and the past state as input. Long-Short-Term Memory (LSTM) is a type of RNN
designed to capture long-range dependencies that often occur in image-based sequences. LSTM consists of
a memory cell and three multiplicative gates, namely input, output and forget gates. It has made a huge
improvement in its speech recognition function. Transcription is a process that produces frame-by-frame
predictions into a tag sequence using RNN. Each input in CTC is a sequence y = y1, . . . , yT , where T is
the length of the sequence.

We have developed a neural network that can be trained end-to-end on pairs of images, eliminating
the manual labeling of individual components on the training images. The network is trained with error
differences calculated using the backpropagation algorithm and stochastic gradient descent (SGD). CRNN
is not limited to recognizing a word in a known dictionary and can handle random strings, sentences or
other scripts. The recognition accuracy is plotted as a function of d. A larger d results in more candidates,
thus a more accurate lexicon-based transcription. On the other hand, the computational cost increases
with larger d, due to the longer BKtree search time. CRNN outperforms commercial OMR engines such
as Capella Scan and PhotoScore by a wide margin.

CRNN uses convolutional features that are highly robust against noise and bias. It can be easily applied
to other image-based sequence recognition probabilities, requiring minimal domain knowledge. CRNN, a
new neural network architecture that integrates the advantages of both deep convolutional neural networks
and recurrent neural networks. It runs directly on coarse-level labels (such as words) and does not require
detailed annotations for each eleventh (i.e., character) in the training phase.

4



Figure 2: The architecture published in Shi et al. (2017)

5



Figure 3: Preprocessing results.

3.3 Preprocessing for OCR

After cutting the license plate, we apply the following preprocessing methods with OpenCV:

• Normalization: using the cv2.normalize method.

• Noise removal: using the fastNlMeansDenoisingColored function of OpenCV.

• Erodation: using a 5× 5 kernel matrix of ones.

• Blur clarification: for the blur clarification, we used a matrix with a value 9 center surrounded with
−1 values.

• Adaptive Threshold: using the adaptiveThreshold function of OpenCV.

This results in a much better image for the OCR, converting the image to grayscale and sharpening
the label of the license plate.

Kernelerodation =

1 1 1
1 1 1
1 1 1


Kernelblur clarification =

−1 −1 −1
−1 9 −1
−1 −1 −1



6



Figure 4: Example YOLO detections, and the corresponding cut outs. Background elements might get
incorrectly labeled as number plates. As we mention later on, our goal is to get a high as possible recall.
If a lower false positive count was desired, we could increase the confidence threshold.

4. Evaluation

4.1 YOLO Object Detection

Our main goal is to never miss the detection of a potential license plate. This means that we favor recall
over precision: we want the correct license plate to be included in the set of detected objects even if this
means an increased number of false positives.

Figure 4 shows random detections in different scenarios. We cut out each of the detected objects to
separate image files. Some examples can be seen on Figure 5. These cut out detections serve as the input
of the next step of our ALPR pipeline.

7



Figure 5: Some example object detection results that serve as the input for the OCR stage.

4.2 Optical Character Recognition (OCR)

When it comes to OCR, we first tried to train our own NN. We have based our work on the architecture
described in Shi et al. Shi et al. (2017). Unfortunately in the end this endeavor did not succeed. We have
gained a lot of insight into the given pipeline. Some parts of this OCR implementation worked successfully.
First we trained this NN with automatically generated text samples. The text generation was achieved with
a Python console application called trdg. This allowed us to generate images based on a text document.
These images contained noise and different levels of distortions. This was meant to precede the training
on real world data.

We also experimented with different data augmentation methods. These methods included changing the
lighting conditions, skewing images, applying noise and others. One of the used augmentation algorithms
is capable of changing the weather conditions of the scene on the picture. Besides applying distortions for
data augmentation purposes, we have used inverse, denoising methods to improve the confidence of the
recognition process.

After successful training and testing on the automatically generated data, we decided to train our
model on the real world images. We used the provided test database containing cars with Hungarian
license plates. The NN was trained for hundred epochs. Each epoch contained fifty batches of images. One
batch contained thirty-five images. After this amount of training the model began to struggle to further
decrease the loss. At this point we decided to use a different model. In the final application we use the
PaddleOCR Du et al. (2020).

8



4.3 Qualitative Comparison

For qualitative comparison, we consider scenarios with viewing conditions corresponding to more difficult
visual settings. We categorize these cases by perceived difficulty, and show examples.

In conclusion, we found these factors to correspond to an increased difficult for the ALPR task:

• Direct sunlight

• Partial occlusion of the license plate

• Miscellaneous weather effects such as rain or fog

• Small size of the license plate (i.e. the object is further away)

We implemented some of these effects in OpenCV, and show corresponding results in Figure 6.

9



4.4 Artifical Weather Effects

Inspired by Saxena, we implemented the following natural-looking weather effects with OpenCV to verify
the generalization of our method, and improve training:

• light-rain: A little blur to the image and random generated lines

• normal-rain: Same as light-rain, but more lines

• snow: Change the color of some part of picture to white to simulate snow.

• sun: Increase brightness for simulating a sunny day

We show these effects in action in Figure 6.

10



(a) Original Image

(b) Light rain. Although the object detection
correctly recognizes the license plate present in
the scene, our OCR fails to correctly recognize
the letters. This can be due to our preprocess-
ing step introducing unwanted artifacts.

(c) Heavy rain. Even the object detection fails
to pick up on the license plate present in the
scene.

(d) Snow and Sun filter. The object detection stage of our pipeline performs well in both cases, although the OCR
fails to correctly recognize the letters under sunny conditions.

Figure 6: Different types of natural-looking weather effects, and corresponding immediate results: original
cut out from the object detection step, and the preprocessing step, that serves as the input to the OCR
step. 11



References

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua
Yang, Qingqing Dang, and Haoshuang Wang. Pp-ocr: A practical ultra lightweight ocr system, 2020.
URL https://arxiv.org/abs/2009.09941.

Gabriel Resende Gonçalves, Sirlene Pio Gomes da Silva, David Menotti, and William Robson Schwartz.
A benchmark for license plate character segmentation. CoRR, abs/1607.02937, 2016. URL http:

//arxiv.org/abs/1607.02937.

Hong ke Xu, Fu hua Yu, Jia hua Jiao, and Huan sheng Song. A new approach of the vehicle license plate
location. In Sixth International Conference on Parallel and Distributed Computing Applications and
Technologies (PDCAT’05), pages 1055–1057, 2005. doi: 10.1109/PDCAT.2005.24.

Rayson Laroca, Luiz A. Zanlorensi, Gabriel Resende Gonçalves, Eduardo Todt, William Robson Schwartz,
and David Menotti. An efficient and layout-independent automatic license plate recognition system based
on the YOLO detector. CoRR, abs/1909.01754, 2019. URL http://arxiv.org/abs/1909.01754.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time
object detection, 2016.

Ujjwal Saxena. Image augmentation: Make it rain, make it snow. how to mod-
ify photos to train self-driving cars. URL https://www.freecodecamp.org/news/

image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f/.

Jithmi Shashirangana, Heshan Padmasiri, Dulani Meedeniya, and Charith Perera. Automated license
plate recognition: A survey on methods and techniques. IEEE Access, 9:11203–11225, 2021. doi:
10.1109/ACCESS.2020.3047929.

Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable neural network for image-based sequence
recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(11):2298–2304, 2017. doi: 10.1109/TPAMI.2016.2646371.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors, 2022. URL https://arxiv.org/abs/2207.02696.

12

https://arxiv.org/abs/2009.09941
http://arxiv.org/abs/1607.02937
http://arxiv.org/abs/1607.02937
http://arxiv.org/abs/1909.01754
https://www.freecodecamp.org/news/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f/
https://www.freecodecamp.org/news/image-augmentation-make-it-rain-make-it-snow-how-to-modify-a-photo-with-machine-learning-163c0cb3843f/
https://arxiv.org/abs/2207.02696

	Introduction
	Previous Solutions
	Automatic Number-Plate Recognition

	Method
	YOLO Object Detection
	Optical Character Recognition
	Preprocessing for OCR

	Evaluation
	YOLO Object Detection
	Optical Character Recognition (OCR)
	Qualitative Comparison
	Artifical Weather Effects


