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Modelling, understanding and controlling the physical world around us is
a longstanding problem in many disciplines. Partial Differential Equations
(PDEs) are one of the most general and popular way of describing evolving
physical systems. We phrase the problem as applying external forces to
our system in order to reach a predefined end state after given time steps,
with the control force being as small as possible. We do this by leveraging
differentiable physics for the optimization problem. The method presented
trains two neural network actors for the distinct tasks of predicting an opti-
mal route between the predefined states and finding the necessary minimal
control forces: a predictor-corrector scheme.

We base this short report on the work and results of [Holl et al. 2020].
Although the methods presented are general enough to handle any types

of mathematical models governed by PDEs, the current work discusses its
use for physical simulations, such as fluid simulation.
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1 INTRODUCTION
In this section, we will give a brief overview of notation, and tech-
niques necessary to understand the following techniques.

2 PROBLEM
Given a physical system u(x, 𝑡), whose natural evolution is described
by the PDE

𝜕u
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)
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P models the physical behavior of the system, and y(𝑡) denotes
external factors that can influence the system. We introduce an
agent into our system that is able to exert force on the system, thus
modifying it. This can be for example a wind blowing over a body
of water, or induced by an electric motor. We factor out all these
influences into a force term F(𝑡), that influences P over time:
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, . . .

)
+ F(𝑡) . (2)

We can now model the agent as a function that computes F(𝑡).
In most real-world scenarios, it is not possible to observe the

full state of a physical system. Considering a cloud of smoke, for
example, we might be able to observe the density field, but the
velocity may not be observable directly. We model this imperfect
information by defining the observable state of u as o(u). All of
these are problem dependent. Our agent is conditioned only on
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The original work is introduced by [Holl et al. 2020].

A supplementary result of [Holl et al. 2020] was Φ𝐹𝑙𝑜𝑤 , an open-source simulation
toolkit written mostly in Python. It is available at https://github.com/tum-pbs/PhiFlow.
All of the figures were in this report were generated with Φ𝐹𝑙𝑜𝑤 , based on the official
examples provided.

these observations, which means it does not have access to the full
state u.

Note that the differentiable solver still has access to the full state,
otherwise the simulation could not be executed properly. When
deploying the trained agent to the real world, the simulation is
replaced by real world physics, but the trained models can still infer
the control forces, as they depend only on the observation of these
states.
Given an initial observable state o(𝑡0) = o0 and a target state at

time o(𝑡∗) = o∗, we would like to match these at time 𝑡0 and 𝑡∗:

o(u(𝑡0)) = o0
o(u(𝑡∗)) = o∗

(3)

Wewould also like tominimize the amount of force appliedwithin
the simulation domain D:

𝐿F [u(𝑡)] =
∫ 𝑡∗

𝑡0

∫
D

|Fu (𝑡) |2 d𝑥 d𝑡 (4)

In practice, we usually take discrete time steps Δ𝑡 to approximate
these integrals, in which case the trajectory u is a sequence of
𝑛 = (𝑡∗ − 𝑡0)/Δ𝑡 states.

We can combine our expectations defined in Equations (3) and (4)
into the loss function

𝐿[u(𝑡)] = 𝛼 · 𝐿F [u(𝑡)] + 𝐿∗𝑜 (u(𝑡∗)), (5)

with 𝛼 > 0. 𝐿∗𝑜 (u(𝑡∗)) is the observation loss, in place to make
sure that we match the states in Equation (3) as closely as we can.
There may not always exist a trajectory u(𝑡) that matches both
o0 and o∗. This can happen due to many things, such as physical
constraints, or numerical limitations.

We use square brackets to denote functions that depend on fields
or sequences rather than single values. These are also called func-
tionals.

3 PRELIMINARIES

3.1 Differentiable Solvers
The target is to minimize a differentiable physics loss function. A
differentiable solver is used to compute the forward physics and the
corresponding gradients to optimize for the loss function.

Let u(x, 𝑡) be described by the PDE P as in Equation (2). A regular
solver can step the system forward in time via Euler steps:

u(𝑡𝑖+1) = 𝑆𝑜𝑙𝑣𝑒𝑟 [u(𝑡𝑖 ), y(𝑡𝑖 )] = u(𝑡𝑖 ) +Δ𝑡 · P(u(𝑡𝑖 ), . . . , y(𝑡𝑖 )), (6)

moving the system forward in time by Δ𝑡 . Repeated execution
integrates us a trajectory 𝑢 (𝑡), approximating a solution to the
PDE. This functionality is not enough by itself to solve optimization
problems, as the derivatives needed can only be acquired using finite
differences, giving us numerical derivates that are neither efficient
nor reliable for the computation of derivatives.

https://github.com/tum-pbs/PhiFlow


2 • Barnabás Börcsök

Differentiable solvers improve upon this by giving us analytic
derivatives. A differentiable solver can efficiently compute the deriva-
tives with respect to any of its inputs, i.e.

𝛿u(𝑡𝑖+1)/𝛿u(𝑡𝑖 ) or 𝛿u(𝑡𝑖+1)/𝛿y(𝑡𝑖 ).

We can utilize this functionality for our gradient-based optimization
of either inputs or control parameters over an arbitrary number of
time steps.

3.2 Iterative trajectory optimization
When trying to estimate a control force F(𝑡), it is common to start
out with a random value, and iteratively improve upon it, until
reaching an optimum. The simplest of these techniques is known
as single shooting: one optimization step consists of simulating the
full dynamics, and then backpropagating the loss through the whole
sequence to optimize the control forces. For a sequence of 𝑛 frames,
this means having 𝑛 copies of the estimator. We call such an agent a
control force estimator (CFE), whose task is to find an optimal force
F(𝑡).
After backpropagating through the whole series, the weight up-

dates are accumulated from each copy of the CFE.
Optimizing a chain of CFEs as described above is both computa-

tionally expensive, and potentially yields unstable gradients. The
latter is a problem especially when the initialization is far off from
an optimum, giving unstable Δ𝑢 gradients. This is usually the case
at the beginning of the optimization.
Differentiable physics losses solve these problems by allowing

the agent to be directly optimized for the desired objective function.
When backpropagating the gradients through thewhole sequence,

the differentiable solver backpropagates the gradients through the
simulation. The main benefit of using a differentiable physics solver
is that it has feedback on how its decisions change the future tra-
jectory as well as how to handle states as input that were reached
because of its previous decisions. As there is no ground truth needed,
problems with multiple possible solutions will naturally converge
towards one solution. This is also illustrated on the toy example
presented in Figure 1.

4 METHOD
In order to successfully interact with the physical system, the agent
has to

• build an internal representation of an optimal observable
trajectory o(u(𝑡)) and

• learn what actions to take in order to move the system
along this trajectory.

[Holl et al. 2020] separate these two subtasks into a predictor-
corrector scheme, that given an o(𝑡) computes o(𝑡 + Δ𝑡) in two
steps. First, a predicted o𝑝 (𝑡 + Δ𝑡) is given, which is then corrected
to yield o(𝑡 + Δ𝑡). These steps can be mostly learned independently.
This motivates us to separate these tasks into two distinct agents,
trained independently.

First, an observation predictor (OP) predicts the next observation
state, given the current one: o𝑝

𝑡+1 (o𝑡 ) for all time steps, giving us
o𝑖 , 𝑖 ∈ 1, 2, . . . , 𝑛 − 1. Then, a control force estimator (CFE) predicts

F(𝑡𝑖 |o(u𝑖 ), 𝑜𝑝𝑖+1), the force necessary to move the simulation to the
predicted next state as close as possible.

Once this F(𝑡) force is estimated up until a time step 𝑛, an oppor-
tunity is presented to update the simulation until time step 𝑛, which
in turn makes it possible to predict a trajectory that more closely
resembles the actual evolution of u.
[Holl et al. 2020] generalize the OP agent to predict not directly

the state o𝑝 (𝑡𝑖+1 |o(u𝑖 ), o∗), but instead to predict the optimal center
point between two states at times 𝑖, 𝑗 ∈ 1, 2, . . . , 𝑛 − 1, 𝑗 > 𝑖 , given
the observed states at these times: o𝑝 ((𝑡𝑖 + 𝑡 𝑗 )/2|o𝑖 , o𝑗 ). Modeling
OP in this way lends itself to recursively evaluating partitions, until
a prediction o𝑝 (𝑡𝑖 ) for every time step 𝑡𝑖 has been made, starting
with o𝑝 ((𝑡0 + 𝑡∗)/2|o0, o∗).

This separation has the added benefit of exposing the predicted
path between the initial and end states. As physical systems can
often demonstrate different behaviors on different time scales, and
the OP can be called with arbitrary two time steps, we will train
multiple distinct instances of OPs for each time scale we need. This
does not add a significant overhead and also simplifies training.
We will refer to OPs trained for different timescale as OP𝑛 for the
number of frames 𝑛 = (𝑡 𝑗 − 𝑡𝑖 )/Δ𝑡 .

4.1 Execution order
Considering the different possible orders in which we can execute
the OP and CFE predictions gives us multiple options regarding
the order of execution. The most straight-forward ordering is pre-
diction first: first predicting the observed states o𝑡𝑖 for every time
step between 𝑡0 and 𝑡∗, starting with the half-way point o𝑡𝑛/2 |o0,o∗ ,
predicted by OP𝑛 . After predicting all observed states, we can eval-
uate the actual path: for each time step, we train the CFE to get
F(𝑡𝑖 |o(u𝑖 , o𝑝𝑖+1)), and stepping the simulation forward after each call
to the CFE. The main problem with this set-up is that sometimes the
reconstructured trajectory from OPs can only be matched partially
due to either physical constraints or numerical inaccuracies. When
subsequent predictions do not align, and the deviation between the
predicted and calculated observations deviate too much, the CFE
might apply too large forces, resulting in undesirable jitters or even
not following the predicted trajectory altogether.

This problem is preventable by using staggered execution, where
an OP is trained only when its corresponding start frame has been
calculated by the CFE, thus being able to take the deviations into
account between the actual evolution o(u(𝑡)) and the prediction
o𝑝 (𝑡).

Although staggered execution is already an improvement upon pre-
diction first, some of the predicted observations remain unchanged
throughout training,most notably the observation o𝑛/2 |o0,o∗ , halfway
between the start frame 𝑡0 and end frame 𝑡∗. When the simulation
reaches such point, there might be a deviation big enough to justify
refining the prediction for this point based on the actual evolution
of u(𝑡). The prediction refinement algorithm is introduced to allevi-
ate these problems. For further discussion and illustrations on the
different execution orders, please refer to [Holl et al. 2020].
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Fig. 1. Learning to throw. An example, showcasing an important difference between supervised and differentiable physics approaches. Both the supervised
and the differentiable physics network approximate the function 𝑓 −1 (xfinal ) : R ↦→ R4, which is the inverse of the function 𝑓 (x, y, v, 𝛼 ) , mapping the final
position xfinal of an object being thrown from position (x, y) , with velocity v and angle 𝛼 . The same network architecture is used, with the weights initialized
to the same initial values. Both networks have seen the same number of training examples, and are using an 𝐿2 norm between the point of impact resulting
from the predicted initial values and the intended position. It is evident that the DP network is able to get orders of magnitude closer than the supervised
network, which has no knowledge of the underlying physical system, and it’s best guess is to interpolate between the closest data it has seen during training,
which results in a coarse approximation. Also, as the result space to this problem is not unimodal (e.g. it has multiple possible right answers), the supervised
model is further thrown off, and will give values in-between. This means that even if we increase the training data, our supervised model can never learn this
problem properly.

4.2 Architecture and training
[Holl et al. 2020] use a modified U-Net architecture [Ronneberger
et al. 2015], a typical multi-level convolutional network architecture
with skip connections. They modify the basic architecture by using
residual blocks [He et al. 2015]. A more detailed description of the
architecture is given in Appendix C of the original paper.

The networks were implemented in Tensorflow [Abadi et al. 2016]
and trained using the ADAM optimizer on an Nvidia GTX 1080 Ti.
Batch sizes ranging from 4 to 16 were used.
Supervised training usually converged within a fraction of the

first epoch, so supervised training was stopped after a few epochs,
comprising between 2000 and 10.000 iterations.
Training with the differentiable solver was significantly slower,

since the backpropagation through long chains is more challenging
than training with a supervised loss. Optimization steps are also
considerably more expensive since the whole chain needs to be exe-
cuted, including the forward and the backward simulation pass. For
the 2D fluid examples, a single optimization step took 1-2 seconds
to complete. The training for the examples shown took between
one and two days.

5 RESULTS
[Holl et al. 2020] evaluate the capabilities of their method to learn
to control PDEs in three different environments of increasing com-
plexity.

5.1 Burger’s Equation
Burger’s Equation is a nonlinear PDE describing the time evolution
of a single field 𝑢. Following Equation (2), it can be written as

P
(
𝑢,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
,

)
= −𝑢 · 𝜕𝑢

𝜕𝑥
+ 𝜈 𝜕

2𝑢

𝜕𝑥2
. (7)

The full state was observable, e.g. 𝑜 (𝑢) = 𝑢

[Holl et al. 2020] analyze the results both qualitatively and quan-
titatively. Even though the CFE scheme requires only 1/200th the
inference time, it does not manage to converge to the ground truth,

while the supervised and differentiable physics losses manage to
approximate the expected evolution of 𝑢, the differentiable physics
version giving much smoother results.

5.2 Incompressible fluid flow
The Navier-Stokes equations govern incompressible fluid flows. For
a velocity field v, these can be written as

P (v,∇v) = −(v × ∇)v + 𝜈∇2v − ∇𝑝
𝜌 𝑓

(8)

subject to the hard constraints ∇ · v = 0 and ∇ × 𝑝 = 0, where 𝑝
denotes pressure and 𝜈 the viscosity. A constant fluid density is
assumed throughout the simulation, setting 𝜌 𝑓 = 1.

[Holl et al. 2020] train the OP and CFE networks for two different
tasks:

• reconstruction of natural fluid flows
• controlled shape transitions

[Holl et al. 2020] used 1282 grids, with the ability to apply forces
to the whole of v, resulting in more than 16.000 continuous control
parameters. Additionally, a passive density 𝜌 is added that moves
with the fluid via 𝜕𝜌

𝜕𝑡 = −v · ∇𝜌 . v is set to be hidden, and 𝜌 to be
observable.
A reduced example of controlling shape transitions is shown in

Figure 2

5.3 Incompressible fluid with indirect control
The most complicated setup has an increased complexity due to
adding obstacles to the simulated domain and also limiting the area
that can be controlled by the network. As before, only the density 𝜌

is observable. Here, the goal is to move the "smoke" from its original
position into a predefined "bucket" at the top of the domain, as seen
in Figures 3a through 3c.

5.3.1 Simulation Control. As mentioned previously, controlling
the world around us is a long-standing problem in many disciplines
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Fig. 2. An example of training the network for shape transition, advancing from the initial state o0 to the desired state o∗ through some reconstructed states
o(𝑢 (𝑡𝑖 ) ) from left to right. This example was created using a 64 × 64 grid.

(a) start (b) (c) end

Fig. 3. Incompressible fluid with indirect control. The agent is able to exert
force in the blue region, and is able to observ the density 𝜌 , denoted with
yellow. The objective is to get all of the material out on a predefined "bucket"

beyond the study of fluid simulations, like robotics or environmental
engineering, with numerous real life applications.

In an overview talk1, the authors compared the discussed indirect
control problem to a fire breaking out in a room, and having to blow
the fire out by controlling the ventilation system around the room.

5.4 Source
All results are accessible in online form as supplemental materials,2
as well as in the Appendices of the original paper.
The code for recreating the discussed results is also available. 3

5.5 Comparison with Existing Methods
[Holl et al. 2020] compare their method with multiple baselines
both analitically and quantitatively. In their experiments, using
prediction refinement with differentiable physics training yields the
best results.

6 CONCLUSION
[Holl et al. 2020] introduce a novel method to control PDEs with
differentiable physics: a hierarchical corrector-predictor scheme,
dividing the problem into easier subproblems. The proposed method
was applied to solve different challenging PDEs, such as the 1D
Burger’s equation, and the Navier-Stokes equations (in 2D) to tackle
incompressible fluid flow problems.

The approach has possible applications far beyond the examples
used for illustrating the method. Controlling systems governed by
PDEs, such as robotics, environmental engineering, or describing
wildlife populations.

1https://youtu.be/BwuRTpTR2Rg
2https://ge.in.tum.de/download/2020-iclr-holl/supplemental/supplemental.html
3https://github.com/holl-/PDE-Control
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