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(Forward) Physics Simulation
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Physical simulations are much more complex …



Artistic Simulation of Curly Hair, Hayley et. al

Each strand is made up of springs (Hooke’s law)
Simulating 579 hair strands (44,552 points)
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Elastic Object + Fluid



2D Indirect Fluid Control

Source: 
Learning to Control PDEs with Differentiable Physics, 
Holl et. al
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Source: https://github.com/taichi-dev/difftaichi#differentiable-billiard-simulator-python3-billiardspy

Gradient descent iteration 0 … … and iteration 100

https://github.com/taichi-dev/difftaichi


Source: https://github.com/taichi-dev/difftaichi

Elastic Object + Fluid
450 gradient descent iteration



2D Indirect Fluid Control

Source: 
Learning to Control PDEs with Differentiable Physics, 
Holl et. al

100 training samples, each with 16 time steps

Learns to move >99% of the volume into the bucket



Supervised vs. Diff. Physics loss

Learning to throw, first 4 test cases
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Partial Differential Equations (PDEs)

• The most fundamental description of evolving systems
• From quantum mechanics to turbulent flows
• For a physical system

• Agent only has access to          (e.g. density, but not velocity)



Partial Differential Equations (PDEs)

• A Solver moves the system forward by a time increment Δ𝑡

• Differentiable Solvers can efficiently compute the derivatives
with respect to any of the inputs:



Goal

i. Find optimal trajectory
Observation Predictor (OP) agent

ii. Move the system along it
Corrector Network agent: 
Control Force Estimator (CFE)

(+ minimize the force applied)
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Neural Networks are Universal Function Approximators

• Numbers in, Numbers out

𝑉𝐺𝐺 − 16(
(0.8, 0.6, 0.15) ⋯ (0.87 0.4, 0.2)

⋮ ⋱ ⋮
(0.3,0.5,0.4) ⋯ (0.3,0.7,0.2)

) =[.02, … , .001, 0.4221,… ]

”It’s a squirrel”
“AI”
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Deep Learning for Cloud Rendering

• Approximating the Radiative Transfer Function

• By learning the indirect incoming radiance function



Deep Learning for Cloud Rendering – Results

24x faster convergence
than path tracing (PT)
on average!



Main takeaway

• Don’t throw away existing knowledge!
• Leverage already existing methods
• Deep Learning is not magic, and shouldn’t be treated as such
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Sources

Papers:

• Learning to Control PDEs with Differentiable Physics [Holl et al. 2020] (+ the supplemental materials)
https://ge.in.tum.de/publications/2020-iclr-holl/

• DiffTaichi: Differentiable Programming for Physical Simulation
https://arxiv.org/abs/1910.00935

• Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks, by Kallweit et al. [2017]
https://la.disneyresearch.com/publication/deep-scattering/

Talks:

• Differentiable Physics (for Deep Learning), Overview Talk by Nils Thuerey [https://youtu.be/BwuRTpTR2Rg, 40m48s]

• Differentiable Physical Simulation and AI @ NeurIPS 2020 DiffCVGP workshop [https://youtu.be/i2O72iMe9ug, 29m59s]
• Differentiable physics and the Taichi programming language
• Code repo with examples: https://github.com/taichi-dev/difftaichi

https://ge.in.tum.de/publications/2020-iclr-holl/
https://arxiv.org/abs/1910.00935
https://la.disneyresearch.com/publication/deep-scattering/
https://youtu.be/BwuRTpTR2Rg
https://youtu.be/i2O72iMe9ug
https://github.com/taichi-dev/difftaichi

