Chair of Computer Graphics and Visualization Department of Informatics Technical University of Munich

Rendering Participating Media

Data Visualization Seminar

Barnabás Börcsök

Chair of Computer Graphics and Visualization Department of Informatics Technical University of Munich

Winter Semester, 2021/2022

Motivation

Motivation

Propagation of light in a medium

Possible interactions

between the volume and the light traveling through the medium

Summing up the losses

 σ_a : Absorption coefficient σ_s : Scattering coefficient $\sigma_a + \sigma_s = \sigma_t$: Extinction coefficient

 $\sigma_t \implies$ Homogeneous

We lose $\sigma_t(x)L(x, \omega)$ radiance due to *absorption* and *out-scattering*.

 $\sigma_t(\boldsymbol{x}) \implies$ Heterogeneous

In-scattered radiance

Phase function

 $f_p(oldsymbol{x},oldsymbol{\omega},oldsymbol{\omega}') \ pprox BSDF$ (in surface rendering)

scattering at point *x*, given incident (ω) and outgoing (ω') directions

 ∫_{S²} f_p = 1

 f_p(θ)|_{θ=∠(ω,ω')}

 f_p(x, ω, ω') = 1/(4π), if the medium is *isotropic* (otherwise, *anisotropic*)

Emission

Assembling all the parts

- Loses $\sigma_a L(x, \omega)$ due to absorption
- Loses $\sigma_s L(x,\omega)$ due to out-scattering
- Gains $\sigma_s L_i(x,\omega)$ due to in-scattering
- Gains $\sigma_a L_e(x, \omega)$ due to emission

RTE – Radiative Transfer Equation

The change in radiance L traveling along direction ω through a differential volume element at point x.

$$(\boldsymbol{\omega}\nabla)L(\boldsymbol{x},\boldsymbol{\omega}) = \underbrace{-\sigma_t(\boldsymbol{x})L(\boldsymbol{x},\boldsymbol{\omega})}_{Extinction} + \underbrace{\sigma_s(\boldsymbol{x})L_s(\boldsymbol{x},\boldsymbol{\omega})}_{In-scattering} + \underbrace{\sigma_a(\boldsymbol{x})L_e(\boldsymbol{x},\boldsymbol{\omega})}_{Emission}$$
(1)

RTE – Radiative Transfer Equation

The change in radiance L traveling along direction ω through a differential volume element at point x.

 $L(\mathbf{x}, \boldsymbol{\omega})$

 $(\boldsymbol{\omega} \nabla) L(\boldsymbol{x}, \boldsymbol{\omega}) = \underbrace{-\sigma_t(\boldsymbol{x}) L(\boldsymbol{x}, \boldsymbol{\omega})}_{Extinction} + \underbrace{\sigma_s(\boldsymbol{x}) L_s(\boldsymbol{x}, \boldsymbol{\omega})}_{In-scattering} + \underbrace{\sigma_a(\boldsymbol{x}) L_e(\boldsymbol{x}, \boldsymbol{\omega})}_{Emission}$

Let's integrate it!

Barnabás Börcsök | Rendering Participating Media | WS 2021/2022

(2)

Integrating the loss of radiance

 $L(\boldsymbol{x} + dx) = L(\boldsymbol{x}) - L(\boldsymbol{x})\sigma_t(\boldsymbol{x})dx\Big|_{dx = \nabla \boldsymbol{\omega}, L(\boldsymbol{x}) = L(\boldsymbol{x}, \boldsymbol{\omega})}$ $\left| rac{dL(m{x})}{dx} = -L(m{x})\sigma_t(m{x})
ight|$ ("exponential extinction") (3) $\int_{L(x)}^{L(x+S)} \frac{1}{L} dL = -\int_{0}^{S} \sigma_t(\boldsymbol{x}) dx$ $ln(L(\boldsymbol{x}+S)) - ln(L(\boldsymbol{x})) = -\int_{0}^{S} \sigma_{t}(\boldsymbol{x})dx$

 $L(\mathbf{x}, \boldsymbol{\omega})$

Transmittance The Beer-Lambert Law

$$\implies L(\boldsymbol{x}+S) = L(\boldsymbol{x})e^{-\int_0^S \sigma_t(\boldsymbol{x}+s)ds}$$

Usually written as: $e^{-\int_0^y \sigma_t (x-s\omega)ds} = T(x, y)$ *"transmittance coefficient"* T(x, y)net reduction factor between x and ydue to absorption and out-scattering

 $\int_{0}^{y} \sigma_{t}(\boldsymbol{x} - s\boldsymbol{\omega}) ds = \tau(\boldsymbol{x}, \boldsymbol{y})$ "optical thickness" τ

$$T(t) = e^{-\tau(t)} = e^{-\int_0^t \sigma_t (x - s\omega) ds}$$

over distance t

RTE – Radiative Transfer Equation The integral version

ТЛП

VRE – Volume Rendering Equation

$$L(\boldsymbol{x},\boldsymbol{\omega}) = \int_{0}^{z} T(\boldsymbol{x},\boldsymbol{y}) \big[\sigma_{a}(\boldsymbol{y}) L_{e}(\boldsymbol{y},\boldsymbol{\omega}) + \sigma_{s}(\boldsymbol{y}) L_{s}(\boldsymbol{y},\boldsymbol{\omega}) \big] d\boldsymbol{y} + T(\boldsymbol{x},\boldsymbol{z}) L(\boldsymbol{z},\boldsymbol{\omega})$$
(5)

ТШ

Monte Carlo Integration

$$\int f(x)dx = \int \frac{f(x)}{p(x)}p(x)dx = E_N\left[\frac{f(x)}{p(x)}\right] \approx \frac{1}{N}\sum_{i=1}^N \frac{f(x_i)}{p(x_i)}$$

Applied to the Volume Rendering Equation:

$$\langle L(\boldsymbol{x}, \boldsymbol{\omega}) \rangle = \frac{T(\boldsymbol{x}, \boldsymbol{y})}{p(y)} \big[\sigma_a(\boldsymbol{y}) L_e(\boldsymbol{y}, \boldsymbol{\omega}) + \sigma_s(\boldsymbol{y}) L_s(\boldsymbol{y}, \boldsymbol{\omega}) \big] + T(\boldsymbol{x}, \boldsymbol{z}) L(\boldsymbol{z}, \boldsymbol{\omega})$$

 \blacksquare p(y) is the PDF of sampling point y

$$\implies \sum_{i=1}^{N} \left(\frac{T(\boldsymbol{x}, \boldsymbol{y}_{i})}{p(y_{i})} [\sigma_{a}(\boldsymbol{y}_{i})L_{e}(\boldsymbol{y}_{i}, \boldsymbol{\omega}) + \sigma_{s}(\boldsymbol{y}_{i})L_{s}(\boldsymbol{y}_{i}, \boldsymbol{\omega})] \right) + T(\boldsymbol{x}, \mathbf{z})L(\mathbf{z}, \boldsymbol{\omega})$$

We need:

- Sampling distances
- \Box Estimating the transmittance T along a ray

ТШ

Tracking In homogeneous volumes

- Simulate how a photon bounces around inside a volume
- Explicitly modeling absorption and scattering effects

$$T(t) = e^{-\int_0^t \sigma_t (x - s\omega) ds} = e^{-\int_0^t \sigma_t ds} = e^{-\sigma_t t} = T(t)$$
(6)

 $\begin{array}{l} \mathsf{PDF} \ p(t) = \sigma_t e^{-\sigma_t t} \ \text{(by normalizing)} \\ \mathsf{Perfectly importance sample with} \ t' = -ln(1-\zeta)/\sigma_t \\ & \zeta \in [0,1) \end{array}$

$$L(\boldsymbol{x},\boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \Big[\frac{\sigma_a}{\sigma_t} L_e(\boldsymbol{x}_t, \boldsymbol{\omega}) + \frac{\sigma_s}{\sigma_t} L_s(\boldsymbol{x}_t, \boldsymbol{\omega}) \Big] dt + L_d(\boldsymbol{x}_d, \boldsymbol{\omega})$$
(7)

$$\frac{\sigma_a + \sigma_s}{\sigma_t} = 1; P_a = \frac{\sigma_a}{\sigma_t}; P_s = \frac{\sigma_a}{\sigma_t}$$
(8)

Closed-Form tracking In homogeneous volumes

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \Big[P_a L_e(\boldsymbol{x}_t, \boldsymbol{\omega}) + P_s L_s(\boldsymbol{x}_t, \boldsymbol{\omega}) \Big] dt + L_d(\boldsymbol{x}_d, \boldsymbol{\omega})$$

Barnabás Börcsök | Rendering Participating Media | WS 2021/2022

(9)

Regular tracking In heterogeneous volumes

What happens if the volume is not homogeneous?

 \implies apply closed-form tracking to homogeneous sub-parts

 $\implies \sigma_t(\boldsymbol{x}) \\ \implies \sigma_t$

$$L(\boldsymbol{x}, \boldsymbol{\omega}) = \int_{t=0}^{d} p(t) \Big[P_a L_e(\boldsymbol{x}_t, \boldsymbol{\omega}) + P_s L_s(\boldsymbol{x}_t, \boldsymbol{\omega}) \Big] dt + L_d(\boldsymbol{x}_d, \boldsymbol{\omega})$$
(10)

ТΠ

Delta tracking Introducing null-collisions

- 1. Problem: the volume is heterogeneous
- Idea: Increase the number of interactions to make it homogeneous, but reject some of the interactions ⇒ null-collisions

$$L(\boldsymbol{x},\boldsymbol{\omega}) = \int_{0}^{\infty} T_{\bar{\sigma}}(\boldsymbol{x},\boldsymbol{y}) \Big[\underbrace{P_{s}(\boldsymbol{y})L_{s}(\boldsymbol{y},\boldsymbol{\omega})}_{\text{in-scatter}} + \underbrace{P_{a}(\boldsymbol{y})L_{e}(\boldsymbol{y},\boldsymbol{\omega})}_{\text{emission}} + \underbrace{P_{n}(\boldsymbol{y})L(\boldsymbol{y},\boldsymbol{\omega})}_{\text{null-collision}} \Big] d\boldsymbol{y}$$
(11)
$$T_{\bar{\sigma}}(\boldsymbol{x},\boldsymbol{y}) = e^{-\int_{0}^{\boldsymbol{y}} \sigma_{s}(\boldsymbol{s}) + \sigma_{a}(\boldsymbol{s}) + \sigma_{n}(\boldsymbol{s}) d\boldsymbol{s}}$$
(12)

$$\sigma_n(\boldsymbol{x}) = \bar{\sigma} - \sigma_t(\boldsymbol{x}) \tag{13}$$

$$\bar{\sigma} = \sigma_s(\boldsymbol{x}) + \sigma_a(\boldsymbol{x}) + \sigma_n(\boldsymbol{x})$$
(14)

Transmittance Estimation Ray Marching

Acceleration Data Structures

- Spatially-varying properties
- Data access usually dominates the render time
 - \implies data structures are key for achieving good performance
- Volume data can quickly grow into hundreds of gigabytes for production
 - □ For example, peak storage needed for a single shot of the movie Soul was 80 TBs.

Remaning challenges and open problems

- Joint handling of surfaces and volumes
 - Unifying the different techniques
- Machine Learning
 - Vast cost of data access and tracking particles high-albedo volumes (resulting in lots of scattering) e.g. clouds

Summary

- Problem statement and model of volume and light propagating through it
- Interaction between light ray and volume
- Formula for getting the radiance L(x, ω) to make it applicable to usual ray tracing methods
- Subtasks needed
 - Distance sampling
 - Transmittance estimation
- Optimization
- Remaining challenges and open problems

Chair of Computer Graphics and Visualization Department of Informatics Technical University of Munich

Rendering Participating Media

Data Visualization Seminar

Barnabás Börcsök

Chair of Computer Graphics and Visualization Department of Informatics Technical University of Munich

Winter Semester, 2021/2022