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Figure 1: Examples of participating media.

Abstract
Rendering participating media such as smoke, fog, clouds and fire is an important and active branch of computer graphics
research. This essay aims to give an overview of rendering such volumetric phenomena by formalizing the problem statement,
and building up to current advancements and directions of research in the field of rendering participating media.

CCS Concepts
•Computing methodologies → Rendering;

1. Introduction

Participating media affect the light as it tries to propagate through
its volume. Some of the common examples include glass, water,
smoke, and even clear air. (See Figure 1.) We approach the ren-
dering of such phenomena as a collection of particles interacting
with light rays. Chapter 2 defines these possible interactions, lay-
ing the foundation for Chapter 3 to formalize a possible exten-
sion of the widely used surface rendering equation, first introduced
by [Kaj86].

The main contribution of this paper is an overview of rendering
participating media, building up the necessary formulations, and
also giving a stable starting point for the interested reader to build
up and understand more advanced techniques.

This paper builds for the most parts on the 2017 SIGGRAPH
course on Production Volume Rendering [FWKH17] and on the
2018 survey on Monte Carlo Methods for Volumetric Light Trans-
port Simulation [NGHJ18].

As the use of ray tracing and Monte Carlo rendering is
prevalent in current state-of-the-art production rendering engines
[FWKH17], we also formalize the problem of rendering participat-
ing media as a ray-tracing problem, utilizing stochastic techniques
to solve the equations.

The use of Monte Carlo techniques means that we model the in-
teractions between particles and media as a probability field, mod-
eling the "average effect" instead of the individual collision effects.

As photons, making up the light rays, propagate through partici-
pating media, the ray’s direction and radiance (ultimately perceived
as color) changes. This change in the light ray’s direction and/or
radiance is attributable to collisions with particles assumed to be
infinitesimal volumes, that make up the whole of the participating
media, as outlined in Section 2. In essence, as these modified light
rays end up reaching our eyes (or more precisely, our virtual cam-
era), we end up seeing the phenomena at hand.

We assume statistically independent collisions. This means that
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the methods discussed will work in any gaseous media (e.g. clouds,
smoke, fog, fire, etc), but not for dense granular media such as sand
and snow, where these assumptions break down.

The prerequisite for the above assumption is that the size of the
particles should be negligible compared to the average distance be-
tween them. If the particles are comparable to the average distance
between them (which is the case for dense granular media), the as-
sumption of statistically independent collisions breaks down, as a
collision event results in a big deviation compared to a case where
the event does not happen.

2. Properties of the medium

After a brief introduction to our goal and assumptions, we now
dive deeper into how we think about participating media, and define
important properties of the materials.

2.1. Collision coefficients

Participating media is a collection of microscopic particles.

As a photon travels through a medium (in the computer graphics
sense), it interacts with material particles, which results in a loss of
radiance due to the material absorbing the energy of the photon, or
scattering it in some different directions. It is also possible for the
photon particle to gain radiance due to the material’s emission of
energy, and also due to collecting the light scattered previously at
some other point in the volume.

The absorption coefficient σa and scattering coefficient σs each
quantify the local probability density of a photon undergoing the re-
spective interaction per unit distance traveled [ 1

m ]. For an overview
of the possible interactions, see Figure 2.

EmissionIn-scatteringOut-scatteringAbsorption

∇ω

L(x,ω)

Figure 2: Possible interactions between the volume and the
light traveling through the medium. In this example, it first loses
σaL(x,ω) radiance due to the material absorbing a portion of the
light, then loses further σsL(x,ω) due to out-scattering. Then it
gains σsLi(x,ω) radiance from light scattered at another part of
the volume. Lastly, it gains σaLe(x,ω) light due to the material’s
emission.

The extinction coefficient σt = σa +σs indicates the probability
density of either type of event happening per unit distance. It is also
called the attenuation coefficient.

2.2. Phase function

The phase function fp(x,ω,ω′) describes how the volume scatters
light at a given point x, depending on the incident (ω) and outgoing
(ω′) directions.

In order to influence only the direction of the light (but do not
influence the intensity of the light), fp needs to be normalized over
the unit sphere:

∫
fp(x,ω,ω′) = 1.

Its use is analog to the BSDF function in the case of surface
rendering. In most cases, fp can be written as a function of the
single angle θ between the two directions ω and ω

′. If the medium
scatters light uniformly in all directions, it is said to be isotropic,
and the phase function is fp,isotropic(x,ω,ω′) = 1/(4π).

If the phase function is not isotropic, then it is anisotropic.

2.3. Directional dependence

In cases when the collision coefficients σa and σs do not depend
on the direction of light propagation, the phase function can be pa-
rameterized only by the angle between incident and scattered light.
A material is then called isotropic. (Note: for isotropic materials,
the phase function can still be anisotropic – not scattering light uni-
formly.)

A material is anisotropic, if the collision coefficients or the phase
functions depend on the direction of incident or scattered light, i.e.
the response of the material varies with the direction of propaga-
tion.

2.4. Spatial dependence

The medium is homogeneous if all of the above medium properties
are spatially invariant, and heterogeneous otherwise.

3. Mathematical foundations for radiative transport

The physical phenomenon of radiative transport is the transfer of
energy in the form of electromagnetic radiation. In our case, we
will deal with the transport of light, more precisely the interac-
tions defining a photon traveling through participating media. For
an overview of notation used, see Appendix A.

3.1. Radiative Transfer Equation (RTE)

The Radiative Transfer Equation (RTE) gives us the change in ra-
diance traveling along direction ω through a differential volume
element at point x. Appendix B gives a detailed derivation of the
RTE function, and its components before arriving at the integral
form of the RTE, giving us the explicit function

L(x,ω) =
∫ ∞

0
e−

∫ y
0 σt (x−sω)ds

[
σs(y)Ls(y,ω)+σa(y)Le(y,ω)

]
dy,
(1)

which is suitable for use in a path tracing setting. We call
e−

∫ y
0 σt (x−tω) the transmittance coefficient and denote it with

T (x,y), summing up the loss of light intensity between x and y
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due to absorption and out-scattering by integrating a single differ-
ential process along ω. The exponent

∫ y
0 σt(x− sω) is called the

extinction coefficient τ. This is the Beer-Lambert law [Lam60],
and we will often simplify the notation of the function to take
only a single parameter t, denoting the distance between x and y:
T (t) = e−τ(t) = e−

∫ t
0 µt (x−sω)ds.

3.2. Volume rendering equation

As scenes are usually not made up only of participating media, but
also solid objects with hard boundaries, we have to extend Equa-
tion (1) to also accommodate light interactions with object surfaces.
The radiative equilibrium at a surface point z is given by the surface
rendering equation [Kaj86]:

L(z,ω) = Le(z,ω)+
∫

S2
fr(z,ω,ω′)Li(z,ω′)

∣∣n(z ·ω′)∣∣ dω
′, (2)

where Le(z,ω) is the radiance emitted by the surface, fr(z,ω,ω′)
is the BSDF (Bidirectional Scattering Function), relating the differ-
ential outgoing radiance dL(z,ω) to the incident radiance Li(z,ω′),
and

∣∣n(z ·ω′)∣∣ is a foreshortening term depending on the surface
normal n(z,ω′) at incident point z and incident ray direction ω

′.

We can combine Equations (1) and (2) into the Volume Render-
ing Equation (VRE):

L(x,ω) =
∫ z

0
T (x,y)

[
σa(y)Le(y,ω)+σs(y)Ls(y,ω)

]
dy

+T (x,z)L(z,ω).
(3)

Given a closest surface point z, our volumetric rendering equa-
tion holds true up until this point, giving us the boundary condition
for truncating the bounds of Equation (1). (As we have to calculate
the propagation of the light ray in the media up until this point.)
The radiance at this point z is given by Equation (2) in direction
ω. L(z,ω) represents the exitant radiance from the surface given by
Equation (2), and the fraction of this that actually reaches our point
x is given by the transmittance coefficient T (x,y).

ω

L(x,ω)

x
emissive
medium

scattering
medium

y y z
surface

σs(y)Ls(y,ω)σa(y)Le(y,ω)

Figure 3: The Volume Rendering Equation (VRE) visualized.

3.3. Monte Carlo integration

Practically all modern high-quality physically-based rendering en-
gines use Monte Carlo integration to solve the aforementioned
equations.

A primary Monte Carlo estimator 〈F〉 = f (x)/p(x) is used to
approximate F(x)’s integrand f (x), where the probability density

function (PDF) p(x) is used to sample points x. Averaging N inde-
pendent realizations of a primary estimator, one can obtain a sec-
ondary (i.e. multi-sample) estimator.

We can use a Monte Carlo estimator to solve the Volume Ren-
dering Equation (3), estimating the amount of radiance arriving at
point x from direction ω:

〈L(x,ω)〉=T (x,y)
p(y)

[
σa(y)Le(y,ω)+σs(y)Ls(y,ω)

]
+T (x,z)L(z,ω),

(4)

where p(y) is the PDF of sampling point y, which is y units away
from x. This estimator requires two main routines: one for sampling
distances along the ray, and one for estimating the transmittance
T (x,y) between two given points. We will discuss these in Section
4 and 5 respectively.

Estimator 4 gives us a somewhat localized view on the light-
transport simulation, as we consider only one path segment at a
time. For a more global view on the transport problem, one can
also utilize the path integral framework [Vea98], enabling the sam-
pling of entire sequence of vertices at once, in contrast to (4) sam-
pling only one vertex at once. Examples of such global techniques
are joint importance sampling [KGH∗14] and Metropolis sampling
[PKK00]. As we will not discuss these techniques here, the inter-
ested reader might want to refer to the cited sources.

Whatever the sampling technique might be, two fundamental
building blocks should be considered. Firstly, sampling a distance
in a given direction, which is covered in Section 4. This is used, as
we construct our ray, propagating from the sensor (or virtual cam-
era) into our virtual scene (and most notably, into the participating
media). On the other hand, some techniques do not perform ana-
log walks by sampling distances, but instead rely on estimating the
transmittance between two points. We will cover transmittance es-
timation in Section 5.

4. Distance sampling

In this and the next section, we discuss techniques for sampling
distances and estimating transmittance along a ray. To classify
distance-sampling methods, we share the terminology of analog
and non-analog estimators of [NGHJ18], which they borrowed
from the field of neutron transport. They categorize the algorithms
according to whether they strictly adhere to the physical process of
light propagation (analog), or not (non-analog).

Analog methods sample the distance to the next light-medium
collision along the line of flight analogously to how photons in-
teract with materials in the real world. The sampling procedure is
in such cases commonly referred to as free-path sampling or free-
flight-distance sampling. The distance distribution strictly adheres
to the Beer-Lambert law: it has a PDF proportional to the trans-
mittance along the given ray. Sampling can be explicit, via invert-
ing the corresponding cumulative distribution function (CDF), or
implicit, through probabilistic reasoning as in null-collision algo-
rithms (discussed in 4.3).

Non-analog methods have been developed to improve sampling
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efficiency over analog methods. They deviate from the true distri-
bution of free paths, which are then "corrected" by appropriately
weighting the samples. They usually lift some restriction present in
analog methods. As we will not concentrate on these non-analog
techniques, the interested reader may refer to [NGHJ18].

Distance sampling is essential in the common case where a path
is constructed incrementally by successively extending it from the
sensor to the lights.

Methods share the common theme of sampling distances accord-
ing to a certain probability density function (PDF). In the follow-
ing, we first review analytic and semi-analytic analog methods for
media that allows free-path sampling in closed form or through a
simple iterative process. Next, we discuss rejection-based analog
estimators that rely on so-called null collisions.

4.1. Closed-form tracking in homogeneous volume

For sampling purposes, we can define a PDF by normalizing the
transmittance function T (t) = e−

∫ t
s=0 σt (xs)ds.

If the corresponding Cumulative Distribution Function (CDF) is
analytically invertible, then the free-path distance t′ can be sampled
analytically using a single random number ζ.

For the homogeneous volume, where σt is not spatially varying,
the transmittance becomes

T (t) = e−σt t ,

which is the Beer-Lambert law: exponential extinction of radiance.
We would like a free-flight estimator, that produces a free-path dis-
tance t′, the distance a proton will travel in the volume. The PDF
to do so is defined by normalizing the integral of the exponential
function of the transmittance: p(t) = σte−σt t .

We can perfectly importance sample the PDF (producing a weight
of 1) with the analytic formula for sampling free paths using uni-
form random numbers ζ∈ [0,1), [PJH16]: t′=−ln(1−ζ)/σt , with
PDF

p(t) = σte−σt t . (5)

4.2. Regular tracking

In piecewise constant volumes, we can apply closed-form track-
ing to each of the piecewise constant domains, simply traversing
into the next domain if we do not scatter. We can interpret the sur-
face radiance L(z,ω) as coming not from a hit surface, but rather a
different volume. Finding boundaries separating homogeneous ar-
eas can introduce a substantial computing overhead. In order to be
efficient, this approach needs large parts of the volume to be homo-
geneous.

4.2.1. Ray marching

We can reduce the cost of regular tracking, by ignoring the bound-
aries and marching along the ray with fixed-size steps. This signifi-
cantly simplifies the implementation at the cost of introducing bias.
The algorithm queries the local medium extinction and then moves
forward by a fixed distance. We assume either constant or linear

optical thickness between the sampling points, deviating from the
true free-path distribution. Sampling more frequently is always an
option, although this adds to the computational costs. One way to
reduce the cost can be to locally adapt the step size, or introduce
other more sophisticated methods, such as higher order ray march-
ing schemes [Mn14].

4.3. Delta tracking

Also known as Woodcock tracking, the null-collision algorithm, or
pseudo scattering, the main idea behind delta tracking dates back to
the rejection sampling technique introduced by John von Neumann
in 1951 [vN51].

The key idea to sampling free-path distances is to homogenize
the collision density in heterogeneous volumes by introducing a
fictitious collision type. By making the total collision density con-
stant, the volume can be now considered homogeneous. In this new
type of collision, called null-collision, the volume scatters in the
same direction as the incoming direction, having no effect on the
light transport itself. We express this collision type with the null-
collision coefficient σn(x) which acts in the same way as the other
physical coefficients introduced earlier. The physical collision co-
efficients are now spatially variant, as is the null-collision coeffi-
cient σn(x). To homogenize the overall volume, we choose σn(x)
in such a way that the sum of all coefficients, the free-path coeffi-
cient σ̄, becomes constant:

σ̄ = σa(x)+σs(x)+σn(x) = σt(x)+σn(x). (6)

A consequence of this is that σ̄ is always equal or greater to the
maximum of σt(x), which is often formulated as being a majorant
of σt(x): σ̄≥ σt(x).

We can easily calculate σn(x):

σn(x) = σ̄−σt(x). (7)

As σ̄ is constant, it can take on the role of the constant extinction
σt used in the closed-form technique 5 and we can draw a distance
sample in the same way as in the closed-form tracking:

pn(t) = σ̄ e−σ̄t . (8)

By introducing null-collisions, we now have three collision types
instead of two, resulting in the definition of three probabilities to
consider:

Pa(x) =
σa(x)

σ̄
, Ps(x) =

σs(x)
σ̄

, Pn(x) =
σn(x)

σ̄
,

where Pa(x) + Ps(x) + Pn(x) = 1. Applying the additional null-
collision probability to the VRE gives the recursive form

L(x j,ω j) =
∫ ∞

t=0
pn(t j)

[
Pa(x)Le(x j+1,ω j)+

Ps(x)Ls(x j+1,ω j)+

Pn(x)L(x j+1,ω j)
]
dt.

(9)
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To work efficiently, we need σ̄ to be as close to the maximum of
σt as possible. While it is valid, to just simply choose a very large
σ̄, that would result in having mostly null-collisions, stopping only
to do nothing, and continue further.

5. Transmittance estimation

Transmittance T (x,y) gives us how likely it is for a photon to pass
through the volume between points x and y without undergoing ab-
sorption or out-scattering. This is also called free-flight estimation.
As mentioned before, the transmittance function can be simplified
to taking in a single real value t, denoting the distance between x
and y.

Transmittance can be calculated by essentially marching along
the ray (instead of using the Monte Carlo technique) accumulat-
ing the loss of light (e.g. transmittance). This however introduces
bias, and also might result in rendering artifacts if the volume is
undersampled. In production, a ray marching transmittance with
very small step sizes can be used as a reference to validate more
sophisticated implementations [FWKH17].

5.1. Delta tracking transmittance estimator

We can use Equation (8) as a transmittance estimator in the PDF
approach, testing if a collision occured before or after distance t.
This estimator produces a binary estimator: T (t) = 1 or T (t) = 0.
This technique is unbiased. [NGHJ18] The mean of the samples
is the transmittance, although the variance is large. This binary
estimate might be considered to be too inaccurate to be used ef-
ficiently in the PDF approach as it either totally discards or lets
through. [FWKH17] However, the concept of adding null collisions
opens up the possibility for other methods, that we describe in this
section.

5.2. Ratio tracking transmittance estimator

Introduced to computer graphics by [NSJ14], the goal of ratio
tracking methods is the same: estimating the percentage of pho-
tons that make it beyond distance t. The main idea is to remove
the binary fashion of the estimation mentioned above, and instead
weighting the samples by the probability of continuing the walk.

In contrast to the aforementioned binary estimation, ratio track-
ing allows every single distance sample to reach t, scoring a frac-
tional weight. The tracking never terminates before t, and weight
the accumulated transmittance at potential collision position c by
σn(c)/σ̄(c) = 1−σt(c)/σ̄(c), the "probability" of continuing for-
ward. This can be formulated in the final transmittance estimator

T (d) =
K

∏
i=1

(1− σt(xi)

σ̄
), (10)

where K are all of the collisions created before reaching the end
of integration d. Like in delta tracking, the free path coefficient σ̄

needs to be constant and a majorant of σt(xi).

An incremental improvement, called residual ratio tracking is
also introduced by [NSJ14]. Refer to C for more details.

6. Acceleration Data Structures / Optimization

Acceleration data structures are important, as data access usually
dominates the overall render time.

While ray tracing, an improvement can be achieved by avoiding
empty spaces before the first interaction with the volumetric effect.

In the case of delta tracking, having a localized σ̄ majorant for
spatially diverse transmittance also yields performance gains, as we
reduce the number of null collisions, which means we "stop, and
continue without doing anything" fewer times. Space partitioning
data structures, such as k-d trees [YIC∗10] or octrees [KHLN17]
might be used to achieve this.

7. Remaining challenges and open problems

7.1. Machine Learning

As is the case with many others fields of computer graphics (and be-
yond), enhancing volumetric rendering with Artificial Intelligence
(AI) methods, such as machine learning has huge potentials. The
vast cost involved when accessing voxelized data and tracing paths
in high-albedo volumes involving lots of scattering (e.g. clouds)
make it challenging for Monte Carlo techniques to deliver results
at tractable costs. The high expense of importance sampling such
high-dimensional spaces can be mitigated by incorporating vari-
ous aggregators [MWM07] [MPH∗15] [MPG∗16], diffusion ap-
proximations [JMLH01] [DI11] [FHK14] [KPS∗14] or deep learn-
ing [KMM∗17], but this always comes at the cost of introducing
some kind of bias. AI techniques can also be applied at the level of
distance and directional samples for surface rendering [VKŠ∗14]
[VK16] [HEV∗16] [MGN17], or other forms of path guiding could
potentially provide significant benefits.

7.2. Joint handling of surfaces and volumes

A final render usually necessitates including both volumes and sur-
faces in the same scene. Different techniques have been developed
to tackle these different tasks, which could even mean the usage
of different renderers for surfaces and volumes in the same scenes,
potentially leading to problems when combined. A unified scene
representation might lend itself better for many use cases.

8. Conclusion

In this seminar paper, we introduced the problem statement of ren-
dering participating media. We formalized the problem in a way
that is applicable to usual ray tracing methods utilized in rendering
algorithms. We also looked at subtasks needed, namely distance
sampling and transmittance estimation. Without going into more
advanced techniques, our aim was to lay the foundations for fur-
ther reading into the topic, and gave pointers to notable research
papers.
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Appendix A: Notation

x, y ∈ R3 positions in 3D space
s ∈ R scalar value

ω ∈ R3 direction vector
y = x− sω y is s away from x in direction −ω

xs := x− sω optional shorthands for the above
xt := x− tω
y = x− yω y denotes the distance of y from x.

Table 1: A quick overview of notation used

Some papers denote the absorption, scattering and extinction co-
efficients with µa, µs and µe respectively, devising them from the
cross-sectional areas [m2] σa, σs and σt for absorbing, scattering
and extinguishing (both absorbing and scattering) particles and also
the density per unit volume ρ [ 1

m3 ].

They denote the above mentioned collision coefficients with
µa,s,t = σa,s,t ·ρ, multiplying the cross-sectional areas by the den-
sity per unity volume.

For the purposes of this seminar paper, we use the notations in-
troduced in Section 3, denoting the absorption, scattering and ex-
tinction coefficients with σa, σs and σt respectively.

Appendix B: Radiative Transfer Equation

The Radiative Transfer Equation (RTE) gives the change in radi-
ance traveling along direction ω through a differential volume ele-
ment at point x.

As a photon travels through a medium, it interacts with material
particles, which results in a loss of radiance due to absorption, and
scattering in different directions (specified by the phase function
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fp), while also gaining radiance due to the material’s emission of
energy, and collecting the scattered light from all directions.

We call the radiance loss due to the light scattering in all di-
rections out-scattering, and the radiance gain due to collecting the
light scattered elsewhere in-scattering.

We lose a portion of radiance L(x,ω) due to absorption and
out-scattering: σa(x)L(x,ω) and σs(x)L(x,ω), respectively. For
brevity, we usually combine these into a single extinction term:

σt(x)L(x,ω).

For calculating the radiance gains due to in-scattering, we col-
lect all incident radiance Li(x,ω) from all directions on the unit
sphere S2, and call it in-scattered radiance:

Ls(x,ω) =
∫

S2
fp(ω,ω

′)Li(x,ω′)dω
′.

After calculating the in-scattered radiance, we multiply it with
the σs scattering coefficient, as light gets scattered in the direction
of the viewer only if there are scattering particles there.

We can also gain radiance due to the volume emitting energy.
The volume’s emitted radiance is expressed as a radiance field
Le(x,ω), whose output gets absorbed and scattered just like any
other "regular", non-volume light source. If a volume does not emit,
Le(x,ω) is simply zero.

Adding together these four terms, we arrive at the Radiative
Transfer Equation (RTE):

(ω∇)L(x,ω) =−σt(x)L(x,ω)+
+σs(x)Ls(x,ω)+σa(x)Le(x,ω).

(11)

Note: (ω∇) is a notation for looking at the change in radiance L
in direction ω.

Equation (11) gives us the change in radiance in a forward-
transport fashion using the gradient ω∇, defining what happens
to a radiance beam as it travels forward in direction ω, as can be
seen on Figure 2. This is useful for many applications, but not in a
path tracing setting. Integrating Equation 11 along the direction ω,
changing the gradient (ω∇) on the left side into an integral on the
right side, we arrive at the integral form of the Radiative Transfer
Equation, giving us the explicit function

L(x,ω) =
∫ ∞

0
e−

∫ y
0 σt (x−sω)ds

[
σs(y)Ls(y,ω)+σa(y)Le(y,ω)

]
dy.

(12)

Appendix C: Residual ratio tracking

Next to ratio tracking, [NSJ14] also introduced a more sophisti-
cated technique called residual ratio tracking. It is an incremental
improvement, introducing a control extinction coefficient σc, which
is constant over the volume, and ideally is very similar to the actual
extinction coefficient σt . With σc, the transmittance T (t) is now

broken into two parts: a control transmittance Tc(t), which can be
written in closed form, and a residual transmittance Tr(t), which
must be estimated:

Tc(t) = e−σct

Tr(t) = e−
∫ t

s=0 σt (xs)−σcds

T (t) = Tc(t)Tr(t)

(13)

The key improvement of residual ratio tracking over ratio track-
ing is the use of σ̄r, the majorant over the residual extinction coef-
ficient σr = σt −σc.


